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When a laminar flow of  binary gas mixture passes through a plane (Fig. 1) or coaxial (Fig. 2) channel, in which 
recondensation of the volatile component  of the binary gas mixture occurs, the established distributions of  mass velocity 
and pressure in the channel will differ from the velocity and pressure distributions in a gas flow undisturbed by recondensa- 
tion. A theoretical investigation of  flows complicated by recondensafion is of interest for practical calculations of  heat  ex- 
changers, condensers, etc. [ 1 ]. In view of  this the present investigation was devoted to a study of  established laminary iso- 
thermal flows of  a binary gas mixture in plane and coaxial channels with due consideration of recondensation of molecules 
of one of  the gas mixture components.  

The analytical investigations of  flows in a channel between coaxial cylindrical surfaces and between two parallel 
plates are similar and, hence, we will dwell in more detail on the analysis of  flow in a coaxial channel. 

On one of  the surfaces forming the channel absorption of molecules of  the first component  of the gas, mixture 
occurs, and on the other surface release (e.g., condensation and evaporation) takes place. We will assume that the relative 
concentrations c a of  the first component  at the surface of  the inner cylinder c H and at the surface of  the outer cylinder 

c12 are kept  constant 

C 1 !~=R1/R 2 = C l l  : COILS[, e l  [T=I --- C12 ~ e o n s t ~  

where c~ = n l / n ;  n is the concentration of gas molecules (n = nl + n2); n~ and n 2 are, respectively, the concentration of 

molecules of the first and second components  of  the binary gas mixture;  R~ and R 2 are the radii of the cylinders forming 

the channel (R 2 > R 1); r = r /R 2 ; r is the transverse coordinate. 

There is no absorption or release of  molecules of the second component  on the channel boundaries. For  an estab- 
lished flow of  binary gas mixture in a channel the distributions of the relative concentration c~ and mass velocity v depend 

only on r and are characterized [2, 3] by the system of equations 

A (rg,:r) I~; dr " (1) 

d,, <Jp I d___ ( , t r d % l .  
,ova d; ,)z ~- r d," \~ d," j '  (3) 

,1 (rYlr) = 0; (4) 

N,d (rj.2,.) = 0, (5) 

where P = m~n~ -}- m.~n.~ ; m 1 and m 2 are the masses of  the molecules of  the first and second components;  p is the pressure; 

z is the longitudinal coordinate;  c~ nJn;- . l~  n f f  " 2- . = _ = - - D r 2 ( n  m.JP)VC~, J~=n2V--Dl~ . (n2mx, /p)Vc2 " D12 is the diffusion co- 

efficient; tt is the dynamic viscosity. 

The solution of  system (1)-(5) was obtained on condit ion that on the channel boundaries the conditions 

L,~ [~=R1/R~a = 0, (6) 

Y~ I~=&/R2;1 = 0 (7) 

are satisfied. The distribution of v ,  Vz, p, c l ,  and p found in this case have the following form: 

m l n D l ~  Ill [ ( t  - -  c1~.)/(t - -  Cla)] . ( 8 )  
vr = R29T ln(//~./R1) ' 
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1: ~. -~-exp [--/(~)1 d~ 

r z = --~--,{exp if (g) l} [ - -  V exp [ - -  / (v)l dT -F ~ 1 

I 
(9) 

2tnl i' i d r  d [ t ~  ~ l ] d T  2 F O ~ n ( m , , _ m a ) C 2 , ( y r L v ~ _ 2 _ F o ( t t l ~ a - 2 ] .  (10) 

c~ = i - -  (i - -  c1~) ~ ;  

p = {m~ [ i  - -  ( i  - -  c ~ )  ~"1 + m~ ( l  - -  %J ~ }  n.  

(11) 

(12) 

In formulas (8)-(12) 

(Y = 

P0 = P [~=R1/a6:=0; ~l = mlnDx.2(Y/bt; 

~t0 = V I~=R1/a~; P0 = P [~=R,,.'B,.; 

l r , [ (~ - -% ) / O- -q~ ) l  ~ n 
m(nl /n  4 ; / ( ~ ) =  ~ -7" d~. 

R1/R.. 

It  follows from Eqs. (1), (4), and (5) that  functions rpVr, rJir,  and rJ2r are constants, independent of  r. Through any 

cylindrical surface of  radius r (R  1 < r < R 2) with generatrices of  length l in the steady-state case considered here pass 

equal radial flows of  molecules of  the first (Q1) and second (Q2) components  of  the gas mixture (Q1 = 2"~rJlrl; 

Q.~ = 2 a r l ~ l )  , which accounts for the independence of  rJxt and rJ2r on r. 

I t  follows from condit ion (7) and the constancy of  rJ2r and J2r = 0 at any point  in the channel. From the ex- 

pressions for Jl~ and J2r we obtain pv r = m x J~  when J2r = 0. 

Diffusion of  molecules of  the first and second components  in a transverse direction occurs in the presence of  a 
Stefanov flow of  gas mixture. In the case of  such diffusion J2r will be zero and pv r = mlJlr , which agrees with the results 
that  we obtained. 

The equality p v  = mxJlr is derived also from formula (8), from which it follows that pv r is independent of  the 

longitudinal coordinate.  

The dynamic viscosity/z in the general case depends on c a and, hence, on the transverse coordinate r. I f  this 

dependence can be neglected, the distributions of  v and p will be characterized by the formulas 
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U z  ~ m 2/a (2 - -  q) 
' - t ,  ~ )  1 ( 1 -  ~,,) = 3_= 

f R i n 
(13) 

T 

R1/R e 

o �9 [.o-: , {~,,~o-,1 
3- ;'~,,( . , ,-m,>~,, ,o~ " ~ po\~)'  J' ( t4)  

where 
~,~ = O/(~,m~e); 

r : 2 , (,<,, n,) - (,%,,%)',] ~ t -  m, /n2) ,+o ] t - -  (~1 m.>) ~ }. 
The distributions of v r and c 1 in the channel are independent of/~ and are given by formulas (8), (1 I). Formulas (I3) ,  

(14) show that the distributions of v and p in the gas mixture flow for a given flow rate Q of the nonvolatile component 
2 

depend on the drop of concentration of the volatile component in the channel, i.e., on cil and c12. 

To illustrate the dependence of v z on r, c u ,  and c12, Fig. 3 shows plots of the variable 3(r) against r 

R~ { 1 _ ~  ~ [ l - -  (R,/R~)~'] ( t - -  ,~) 1 

for a vapor--air mixture with temperature 293~ pressure Po = 1 arm,/~ = 2"i0 -s kg/m'sec, clz = 0, and different values 

of c n (curve 1 corresponds to c n = 0, 2 to c u = 0.5, 3 to c u = 0.9, 4 to c u = 0.995). The calculations were made for a 

channel with PN/R2 = 0.5. As Fig. 3 shows, an increase in c n for a prescribed flow rate Q leads to an increase in the maxi- 

mum value of v z and shift of the point rma~, at which v z is maximal, towards the outer cylinder. The increase in the longi- 

tudinal velocity component with increase in c n (see Fig. 3) is due to an increase in the total flow rate of the mixture (with- 

out alteration of the flow rate of the noncondensing component) as a result of increase in flow rate of the volatile compo- 
nent. A shift of the maximum towards the outer surface is due to transverse flow of the evaporating component, which 
slows down the flow of gas mixture at the inner surface of the channel, leading to a shift of the point of maximal v z 
towards the outer surface. 

An analysis of formula (13) showed that when cl2 > c u the point rm~ x is shifted towards the inner cylinder with 
increase in c12. 

The dependence of the longitudinal pressure drop p~ on c u and cl2 is determined by the variable -y(cu, c12): 

Pl 

The dependence of 'y(cn ,  c12) on c u when c12 = 0 for a va po r - a i r  mixture at temperature 293~ pressure Po =1 atm, 

and/~ = 2"10 -s kg/m'sec in a channel with Ph/R2 = 0.5 is shown in Fig. 4, from which it follows that with increase in c u 

the longitudinal pressure drop in the channel increases and when c 11 ~ 1 it tends to infinity. 
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An analysis of  formulas (13), (14) showed that at the limit ca ,  c~: ~ 0 the formulas for the distributions of  v a n d  
pressure p become the known formulas for a one-component gas 

where 

[ ~10 2 - -  1 t 7- (RI/R~)~ In T] 
In (Rx/R~) 'p=po--~loz ,  

8~Q In (R1/R2) 
~lO = ~1l/~ [1 - - ( h i / R 2 ) 2  ] {[~ -~- (R1/R2)2 ] |n  (RI/R2) ~11 - -  (R1/R2)21} " 

to the above-treated case of  a coaxial channel. 
An isothermal established laminar flow of  binary gas mixture in a plane channel was investigated in a similar way 

The flow in a plane channel is represented by the system of  equations 

d 
~x pv~ = 0; 

(15) 
dv Op , 4 d [ dvx~ 

pt,~ d~ --  Ox -~"Y ~x [~t-37]; (16) 

F z 
P -~"~'x = ~ ~ ~\~tTx.] ;  (17) 

d j  
~.~ = 0; (18) 

d 
~ J 2 ~  = O. (19) 

System (15), (16) was solved with boundary conditions 

v~ I~=o; 1 = 0; 

Jo~ It=o;1 = O; 

cllt=0 = qo = coast; 

Cllt~ 1 ~ Cth ~ coas t ,  

where t = x/h;  x is the transverse coordinate;  h is the distance between the plates forming the channel. 

(20) 
(21) 
(22) 
(23) 

The distributions found for v ,  v ,  z, p, c~, and p in this case have their simplest form when p = const, when they are 
given by the formulas 

v~ = (qt/(oh); (24) 

%h~[t 1 - o x p  (o,t) ] 
~'~ = - ~  L ~-----'Z~~xp ~" "j; (25) 

P=P~176 P 34 Dlalx (rn2--rnl)mlp [(l_cao)exp(st)_p2(l_C~h)/p~]};. (26) 

cl = I - -  (t - -  qo) exp (st); (27) 

p = {ml[t - -  (1 - -  clo) exp (st)] + m2(l - -  ct0) exp (st)}n. (28) 

In formulas (24)-(28) 

o~ = nrn11)12 In [(1 - -  qh)/( l  - -  ci0)]; s ----- In [(t - -  clh)/(l - -  c~0)]; 
it 

Oh = P It=l; Po = P ]t=l;:=0; a . ,=  0miD1"2" 
- b h : ~ r  ' 

(l--qh~'+~ 

* = - 7 -  
( -c10) j 

(b is the width of  the plates forming the channel). 

Equations (15), (18), and (19) show that  pvx, ]ix, and J:x are constants, independent of  x. The explanation of  the 

independence of  Jlx and J2x on x is that  in the considered case of  steady flow through any plane surface of  length I, paraUel 
to the channel generatrices, pass equal flows of  molecules of  the first (Qa) and second (Q2) components  of the mixture 

(Q'x--- blJl,~; Q2 = blJ2,~) �9 It  follows from condit ion (21) and the constancy of  J:x that J2x = 0 at any point  in the channel. 

From the expressions for ]ix and J2x when J2x = 0 we obtain p v  = mlJlx. Diffusion of molecules of  the first and second 

components  occurs in a transverse direction in the presence of  a Stefanov flow of gas mixture. In the case of  such diffusion 

J:x will be ze ro  and p v  = mlJlx , which is consistent with the obtained results. 
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The equality pv x = miJlx is derived also from formula (24), from which it follows that pv x is independent of  the 

longitudinal coordinate. 

As an analysis of  formula (25) showed, with increase incl0 (c lo> Clh) Or with increase inc,h (c,h> qo) for a 

prescribed flow rate Q, there is, as in the case of  a coaxial channel, an increase in the maximum value of v z due to an in- 

crease in the total flow of  gas mixture and a shift of  the point tma ~ (at which v z is maximal) towards the surface with a 

lower value of c 1 due to slowing down of  the flow of  gas mixture at the evaporation surface. 

An analysis of  (26) showed that with increase ingl0 (el0> glh) or Clh (C,h> C10) the longitudinal pressure drop for a 

prescribed Q increases. 

An analysis of  formulas (25), (26) showed that at the limit Clo , clh ~ 0 the formulas for the distribution of  v z and 

p become the known formulas for a one-component gas 

V z -= a2--qh2t  I t  - -  t ) ,  P = P O  - -  %o z, 
2 ~  ~- 

where a:o = ! 2 . u Q . / ( b h a n )  �9 

Thus, recondensation of  molecules of  one of the components of  a binary mixture greatly affects the distributions 
of  the longitudinal pressure drop and the longitudinal component of  the mass flow velocity in the channel The formulas 
obtained in this paper can be used to describe the flow of  binary gas mixtures in variable-temperature channels with small 
temperature drops [ 1 ], where the transport coefficients (dynamic viscosity, diffusion coefficient, thermal conductivity) can 
be regarded as quantities that are independent of  temperature. 
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CALCULATION OF THE INTERACTION OF A LAMINAR 

BOUNDARY LAYER WITH AN EXTERNAL SUPERSONIC 

FLOW BEHIND AN OBSTACLE 

A. N.  A n t o n o v  UDC 532.526.2:533.69.011.5 

one  can cite many papers dealing with investigation of  flows in zones of  separation and reattachment of a laminar 
boundary layer [ 1-121. In regard to computational methods, it should be noted that the method of  interaction of  the 
boundary layer with an_external perfect flow, to determine flows in the base region, was first proposed in [1 ]. However, 
the lack of  sufficient data on the characteristics of  the incompressible laminar boundary layer has made it impossible to 
obtain satisfactory results on base pressure. In [4, 5] the proposed method was modified and applied to the region of  
interaction of  a density shock with a boundary layer [4], and also in the region of  separation of the laminar boundary layer 
on a cylindrical body in transverse flow [5]. 

The present paper computes flows behind two-dimensional and axisymmetric obstacles, based on a scheme for inter- 
action of  the boundary layer with an external perfect flow. 

1. We consider the following approximate flow scheme in the base region behind an obstacle washed by a uniform 
supersonic stream, a scheme of  typical interaction of  the boundary layer with an external perfect flow (Fig. 1). Between 
sections 1 and 2 there is flow expansion, AB is a line of  constant mass flux, and B is the stagnation point. The broken line 
denotes the edge of  the boundary layer. Immediately behind the body, between sections 2 and 3, there is a constant- 
pressure separation region, so that the interaction flow begins "at some section 3. The calculation of  the interaction between 
the viscous layers and the external, perfect, almost isentropic stream is carried out, as usual, with the boundary layer 
equations. We write down the system of equations for the compressible laminar boundary layer 

(P'*) , '>';'~) -~. (1 .1 )  
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